Rational Multi-Secret Sharing Scheme Based On Bit Commitment Protocol

نویسندگان

  • Yongquan Cai
  • Zhanhai Luo
  • Yi Yang
چکیده

In this paper we mainly focus on the fraud problem among the players and the shortcomings of multisecret sharing existed in rational secret sharing schemes. Based on the exited schemes and the related knowledge such as bit commitment agreement, we proposed a new rational multi-secret sharing scheme that has high security. In our scheme, we take an identity authentication for the dealer in distribution phase. Players can verify the correctness of the identity of the dealer. In this way, it is feasible to prevent the forger from cheating. Based on the discrete logarithm problem, the player can also verify the correctness of the secret share. At the same time the secret shares are divided into groups so that the distribution phase is well designed for the multi-secret sharing. Additional the game theory model is also adopted to realize the rational multi secret sharing. The Execution efficiency, security and the feasibility has been remarkably improved in this our scheme compared with the traditional secret sharing schemes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computationally secure multiple secret sharing: models, schemes, and formal security analysis

A multi-secret sharing scheme (MSS) allows a dealer to share multiple secrets among a set of participants. in such a way a multi-secret sharing scheme (MSS) allows a dealer to share multiple secrets among a set of participants, such that any authorized subset of participants can reconstruct the secrets. Up to now, existing MSSs either require too long shares for participants to be perfect secur...

متن کامل

Sharing several secrets based on Lagrange's interpolation formula and Cipher feedback mode

In a multi-secret sharing scheme, several secret values are distributed among a set of n participants.In 2000 Chien et al.'s proposed a (t; n) multi-secret sharing scheme. Many storages and publicvalues required in Chien's scheme. Motivated by these concerns, some new (t; n) multi-secret sharingschemes are proposed in this paper based on the Lagrange interpolation formula for polynomials andcip...

متن کامل

An Efficient Threshold Verifiable Multi-Secret Sharing Scheme Using Generalized Jacobian of Elliptic Curves

‎In a (t,n)-threshold secret sharing scheme‎, ‎a secret s is distributed among n participants such that any group of t or more participants can reconstruct the secret together‎, ‎but no group of fewer than t participants can do‎. In this paper, we propose a verifiable (t,n)-threshold multi-secret sharing scheme based on Shao and Cao‎, ‎and the intractability of the elliptic curve discrete logar...

متن کامل

A NEW SECRET SHARING SCHEME ADVERSARY FUZZY STRUCTURE BASED ON AUTOMATA

In this paper,we introduce a new verifiable multi-use multi-secretsharing scheme based on automata and one-way hash function. The scheme has theadversary fuzzy structure and satisfy the following properties:1) The dealer can change the participants and the adversary fuzzy structure without refreshing any participants' real-shadow. 2) The scheme is based on the inversion of weakly invertible fin...

متن کامل

Security Analysis of a Hash-Based Secret Sharing Scheme

Secret sharing schemes perform an important role in protecting se-cret by sharing it among multiple participants. In 1979, (t; n) threshold secret sharing schemes were proposed by Shamir and Blakley independently. In a (t; n) threshold secret sharing scheme a secret can be shared among n partic-ipants such that t or more participants can reconstruct the secret, but it can not be reconstructed b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • JNW

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012